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Abstract: Brettanomyces bruxellensis is a wine spoilage yeast known to colonize and persist in pro-
duction cellars. However, knowledge on the biofilm formation capacity of B. bruxellensis remains
limited. The present study investigated the biofilm formation of 11 B. bruxellensis strains on stainless
steel coupons after 3 h of incubation in an aqueous solution. FTIR analysis was performed for both
planktonic and attached cells, while comparison of the obtained spectra revealed chemical groups
implicated in the biofilm formation process. The increased region corresponding to polysaccharides
and lipids clearly discriminated the obtained spectra, while the absorption peaks at the specific
wavenumbers possibly reveal the presence of β-glucans, mannas and ergosterol. Unsupervised clus-
tering and supervised classification were employed to identify the important wavenumbers of the
whole spectra. The fact that all the metabolic fingerprints of the attached versus the planktonic cells
were similar within the same cell phenotype class and different between the two phenotypes, implies
a clear separation of the cell phenotype; supported by the results of the developed classification
model. This study represents the first to succeed at applying a non-invasive technique to reveal the
metabolic fingerprint implicated in the biofilm formation capacity of B. bruxellensis, underlying the
homogenous mechanism within the yeast species.

Keywords: Brettanomyces bruxellensis; biofilm formation; FTIR analysis; machine learning; classifica-
tion; wine spoilage

1. Introduction

Brettanomyces bruxellensis is non-conventional wine yeast, with remarkable spoilage
potential. The spoilage effect is due to the high level of production of undesirable volatile
phenols through the metabolism of the hydroxycinnamic acids in grapes, which have a
detrimental and irreversible effect on the wine’s aroma [1–5]. Additionally, the capacity of
the species to enter under oenological conditions into a viable but not cultivable (VBNC)
state shows that the frequently used culture dependent methods could create a false
estimation of the yeast population, complicating the detection of yeast in production
facilities [6,7]. The fact that B. bruxellensis exhibits an elevated ability to invade wine
cellars and contaminate winery equipment, represents an area of increasing concern for the
wine industry [8,9]. The occurrence of B. bruxellensis in winemaking equipment highlights
the colonization and the biofilm formation capacity of the species in the winemaking
environment, and consequently, demonstrates the persistence of the yeast in the cellar from
one year to the next [8,10].

Biofilms are highly structured multicellular aggregates that are able to adhere to and
grow on biotic and abiotic surfaces [11–13]. This complex structure is mainly composed
of cell-produced extracellular polymeric substances (EPS), which are essential for biofilm
formation. EPS comprise a wide variety of polysaccharides, proteins, glycoproteins, as
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well as glycolipids and extracellular DNA (e-DNA) [14]. So far, the methods used for
the identification of the EPS are quite invasive and the extraction protocols usually target
specific molecules of interest and not the whole matrix [12].

Fourier transform infrared (FTIR) spectroscopy is a powerful, fast and non-invasive
technique for generating direct information about the molecular and chemical composition
of the analyzed sample, based on the absorption of infrared radiation [15]. The technique
is based on the vibration of atoms when the IR radiation passes through the sample, which
generates a vibrational spectra specific to each compound [13]. The method is widely
applied to discriminate biological samples due to the fact that different cell components
produce different absorption profiles [16]. More precisely, FTIR has been used for the
classification and identification of microorganisms at the species and strain levels [17,18].
Interestingly, the method has proven to be capable of identifying species of clinical samples
for diagnostic reasons or for epidemiological surveillance [19]. In the food industry, the
metabolic fingerprint obtained from the FTIR spectra can be used for rapid food identifica-
tion, detection and prediction of microbial spoilage [20–23]. Additionally, the FTIR spectra
analysis can record the biochemical compounds excreted by the microorganisms, such as
those implicated in the EPS biofilm matrix. For instance, FTIR was recently successfully
applied to characterize the chemical composition of the biofilm matrix implicated in dental
plaque formation by streptococci species [24]. Respectively, by the same reasoning, FTIR
can also be applied to predict the microbial mode of life in planktonic or embedded growth.

The aim of the present study was to deepen our knowledge on the biofilm formation
capacity of B. bruxellensis on stainless steel surfaces by applying FTIR spectroscopy. For this
reason, the main parts of the study were to (i) investigate the adhesion capacity of eleven
strains of the species, (ii) compare the metabolic fingerprint of the attached vs. planktonic
cells, (iii) reveal and discuss the compounds of interest implicated in the biofilm formation
capacity of the species associated with wine spoilage.

2. Materials and Methods
2.1. Yeast Strains and Growth Condition

B. bruxellensis strains previously isolated from oenological materials [25] were kindly
provided from the ARS Culture Collection (NRRL) and Institute of Oenology of Bordeaux
(IOEB) collection, as well as from the collection of the Department of Food Science and
Technology of Aristotle University of Thessaloniki. The 11 strains belonged to six different
genetic groups based on the analysis of 12 microsatellites markers especially developed for
the species [26].

2.2. Biofilm Formation on Stainless Steel Coupons

The 11 strains of B. bruxellensis were tested for their biofilm formation capacity on
stainless steel coupons. Microorganisms were stored at −80 ◦C in vials with glycerol (30%)
and were activated by adding 200 µL to 10 mL Yeast Peptone Dextrose (YPD) medium at
28 ◦C for 48 h. Then, for the working cultures, a 100 µL suspension of the activated cells
was inoculated in 10mL of YPD and left for 72 h until reaching the late exponential phase.

Cells for the working cultures were rinsed twice (4000× g, 4 ◦C, 10 min) with sterile
Ringer solution (tablets Merck KGaA, Darmstadt, Germany) and re-suspended in Ringer
solution in order to obtain an OD600 nm = 1. A total of 0.5 mL of the cell suspension was
added to a test tube containing 4.5 mL of Ringer solution and one coupon of stainless
steel (3 × 0.8 × 0.1 cm type AISi-304), reaching an inoculation rate of 107 cfu/mL. A 5 mL
amount of the final cell suspension in Ringer solution completely covered the coupon
surface and was left at 25 ◦C for 3 h. After the incubation period, 1 mL of the culture was
used to estimate the population of planktonic cells (10-fold serial dilutions on YPD agar
plates) while the coupon was carefully removed with sterile forceps to a new tube and
washed on both sides with Ringer solution in order to remove all the loosely attached
cells. After the washing step, the coupon was transferred to a new falcon tube containing
6 mL of Ringer solution and 10 sterile glass beads (3 mm) covered with silicon to perform
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the bead vortex method. Each falcon tube containing the coupon was vigorously swirled
(vortex) for 2 min. After vortexing, 1 mL of suspension was used to estimate the attached
cultivable cell population (10-fold serial dilutions on YPD agar plates). Each experiment
was performed in triplicate and repeated independently two times.

2.3. Fourier Transform Infrared Spectroscopy

The infrared spectra of the cell suspension samples were recorded by a ZnSe 45o
HATR (Horizontal Attenuated Total Reflectance) crystal (PIKE Technologies, Madison,
WI, USA) and by a FTIR-6200 JASCO spectrometer (Jasco Corp., Tokyo, Japan). Spectra
ManagerTM Code of Federal Regulations software v. 2 (Jasco Corp.) was used to collect
the obtained spectra (wavenumber range of 4000 to 400 cm−1).

After 3 h of incubation in contact with the coupon surface, 1 mL of culture of the
11 B. bruxellensis strains was retrieved and transferred to the crystal plate in order to obtain
the FTIR spectra of the planktonic cells. Then, after performing the bead vortex method
for dispatching the attached cells from the formed biofilm on the coupon surface, 1 mL
of suspension was transferred to the crystal plate to obtain the attached cells spectra,
respectively. The process is illustrated in Figure 1. Prior to the first sample measurement,
the reference spectra of the crystal were obtained and this process was repeated after every
five sample measurements. Between measurements, the crystal was cleaned with distilled
water and acetone, while it was left to dry completely until the next sample addition.
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Figure 1. Schematic representation of the main steps implicated in samples preparation for the FTIR
analysis. HATR: Horizontal Attenuated Total Reflectance

2.4. FTIR Spectra Data Analysis

Herein, a detailed description is provided of the analysis pipeline and the correspond-
ing justification (please refer to Figure 2). The data processing and analysis pipeline consists
of data pre-processing and normalization, followed by the extra-tree method [27] (standing
for extremely randomized trees), employed specifically for supervised dimensionality
reduction on the basis of informative, important wavenumber selection. After the wave
numbers were selected and the problem was limited to a small space (fewer features), we
followed two different approaches in order to essentially reach the same target. Concern-
ing the first approach, we employed unsupervised clustering of the data using principal
component analysis (PCA) [28] and Gaussian mixture modeling [29] in order to identify
if the two clusters of planktonic and adhered samples appeared as the “natural” clusters
of the data. At the second approach we follow a classification strategy where the selected
wavenumbers have been used as inputs to an SVM [30] classifier in order to be trained and
used as a model for sample prediction, decision making.
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As shown in Figure 2, the first data manipulation process is to truncate the noisy
areas at the start of the spectra and the area above ~3100 cm−1, corresponding to the
absorption of water (any information under this peak is hidden and cannot be extracted)
prior to normalization (refer to Supplement Material Figure S1A). Thus, we have the range
~880–3100 cm−1. Next in the workflow, and in order to enhance the quality of the data
while also reducing the correlated information across the different wavenumbers and
eliminate the inherent multiplicative noise, the robust normal variate [31] (RNV) model—
which the the robust version of the standard normal variate [32] (SNV) model—is employed
so as to ensure improved downstream analysis (please refer to Supplementary Materials
Figure S1B). Specifically, the RNV is given by:

Sisnv = si−median(S)/ mad(S) (1)

where S is the ensemble of all spectra, and si and sisnv are the ith and the corresponding
normalized spectra, respectively. median absolute deviation [33] (mad) is a robust measure
of the variability of a univariate sample of quantitative data s1,s2, . . . ,sn computed as:

mad = median(si)−median(S) (2)

As the next step, dimensionality reduction via feature selection was performed. For
this, our method of choice was the extra-trees method, which we used in order to identify
the most important and informative wavenumbers for classifying the planktonic vs. biofilm
state/phenotype. This step is critical since in this study we have 116 samples and each
sample—after the aforementioned pre-processing steps—counts for 2300 features. Thus, by
limiting the number of variables, we were able to avoid overfitting, downgrading to a lower
dimension space, while simplifying our problem both for clustering and classification. First,
we split the data (129 samples, where 63 were from biofilm and 66 were from planktonic
forms) randomly into training (99) and test (30; 16 planktonic and 14 biofilm) groups.
The extra-trees was trained with 50 trees in the forest, five-fold cross validation and the
function to measure the quality of a split was “gini” for the Gini impurity. Gini impurity
is a measure of how often a randomly chosen element from the set would be incorrectly
labelled if it was randomly labelled according to the distribution of labels in the subset.
Random forest analysis has been previously used in food analysis [23,34–36]. Herein, we
turn to extra-trees, where the main objective is to further randomize tree building in the
context of numerical input features, where the choice of the optimal cut-point is responsible
for a large proportion of the variance of the induced tree. In comparison to random forests,
the extra-trees method drops the idea of using bootstrap copies of the learning sample
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and instead of trying to find an optimal cut-point for each one of the K randomly chosen
features at each node, it selects a cut-point at random. In the productive context of having
many problems characterized by a large number of numerical features varying more or less
continuously, as we have here, the extra-trees method can lead to increased accuracy due
to its smoothing, while it simultaneously has a lower computation cost as it does not rely
on the determination of optimal cut-points as is the case in standard trees and in random
forests. Furthermore, leaving the bootstrapping idea can lead to advantages in terms of
bias, whereas the cut-point randomization method often results in an excellent variance
reduction effect [27]. Finally, from a functional point of view, the extra-trees method
produces piece-wise multilinear approximations, rather than the piece-wise constant ones
of the random forest method. Therefore, for all of these reasons, we believe that the adopted
approach presented herein will provide us with robust features for efficient classification
and clustering purposes.

Under the scope of the explanatory data analysis via unsupervised clustering, we
used the data (129 FTIR spectra samples) with a reduced number of features, as discussed
previously. As the next step and in order to visualize the data, we further reduced the
dimensionality by principal component analysis (PCA). The first two principal components
accounted for 99.4% of the total variance of the data and we kept only these first two
components. On the two-dimensional space of PC1 and PC2, we applied Gaussian mixture
modeling with two clusters, as this is the number of known states of B. bruxellensis.

Concerning the classification analysis pipeline, SVM-based modeling was employed
with the use of the reduced dimensionality data and the output of the extra-trees method.
Support vector machines (SVMs) are models that are created in a supervised manner and
are used for classification and regression analyses [37]. SVMs are a well suited classification
technique when the training data consist of large number of variables in relation to the
number of observations. In our case, the input matrix X contains 99 normalized FTIR
training samples with 45 variables/wavenumbers each, while the Y matrix is a single
column matrix consisting of the class (coded as a number, 0 and 1) for each corresponding
sample state, i.e., attached or planktonic. A five-fold cross-validation method was used,
with shuffling of the training set, and it was then split into five subsets (folds). A grid
search [38] was also applied for determining the optimum parameters for the SVM model.
A grid search is an exhaustive search through a manually specified subset of the parameter
space, combined with cross validation, in an attempt to compute the ideal kernel and
parameters for the SVM classification. Herein, the kernels tested were: linear, radial
basis function (rbf) and polynomial, the search range for C parameter was set as (0.0001,
0.001, 0.01, 0.1, 1, 10, 100, 1000), while the γ parameter (10–6, 10–1) was in a logarithmic
scale and the degree = 2, 3, 4 and 5. The outcomes for the hyper-parameters grid search
resulted in choosing the linear kernel and C = 10, as the optimal classifier parameters
for our data. Afterwards, the SVM was trained using the resulting optimal kernel and
corresponding parameters.

The whole workflow was implemented in python 3.7, employing the scikit-learn
library [38,39]. All codes and data used herein are available upon request from the authors.

2.5. Statistical Analysis

Results are expressed as mean ± standard deviation of the independent experiments
and analysis of variance (ANOVA), followed by post hoc Tukey’s test (HSD), was used for
comparisons. A p-value ≤ 0.05 was considered statistically significant.

3. Results
3.1. Biofilm Formation Capacity of B. bruxellensis Strains on Stainless Steel Coupons

Strain variability has often been observed for the studied species under the various
phenotypic traits and for the particular case of biofilm formation [7,8,37]. In this study,
11 strains from different genetic groups were chosen based on previous studies that tested
the population structure of approximately 1510 isolates of B. bruxellensis from 29 countries.
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Based on microsatellite analysis, the tested isolates were grouped into six main genetic
groups, named by the reference strain of each group: strains AWRI1608 and GSP1516
(AWRI 1608-like), strains CBS 2499 and CBS 78 (2499-like), strains 33.1 and 33.3 (AWRI
1499-like), CBS5512 and CBS 6055 (CBS5512-like), strain UWOPS92.244.4 (L0308-like and
L14165-like), and strains 15.12 and 45.3 (L 14165-like) [40,41].

The biofilm formation capacity of the 11 B. bruxellensis strains on a stainless steel
surface in an aqueous solution was monitored in six independent biological replicates,
with an incubation period of 3 h. All the strains were inoculated at the same popula-
tion level of 107 cfu/mL. Statistical comparisons separated the strains into three groups
based on their adhesion capacity (Figure 3). The strain 33.3 presented the smallest at-
tached cell population on the coupons (log10 2.32 ± 0.29 cfu/cm2), reaching statistical
significance. Seven strains belonged to the group that expressed an intermediate adhe-
sion capacity, with an average population of attached cells of log10 3.18 ± 0.54 cfu/cm2.
Three strains differed from the rest due to their high concentration of attached cells on the
coupon surface: 33.1 (log10 5.6 ± 0.29 cfu/cm2), CSB6055 (log10 5.43 ± 0.24 cfu/cm2) and
15.12 (log10 5.25 ± 0.15 cfu/cm2).
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of 11 strain s of B. bruxellensis in Ringer solution. Values with different superscript roman letter (a–c)
in the same row are significantly different according to Tukey’s post hoc test (p < 0.05).

3.2. FTIR Spectra Analysis of Attached vs. Planktonic Cells of B. bruxellensis

In this subsection, the results and findings of the two-way analysis of the FTIR spectra
are presented, considering two states of the cells of B. bruxellensis for all 11 strains used
herein. Following the first type of analysis, i.e., via unsupervised clustering (as discussed
in the Material and Methods Section), we conclude that, given a set of measurements, we
are able to identify two distinct populations forming two “natural” inherent classes that
correspond to the distinction of attached cells vs. the planktonic cells. This result—also
depicted in Figure 4 with the two mode mixture of Gaussians—is a very interesting out-
come, showing that attached cells exhibit much less deviation among them even when the
input spectra originate from different strains and cultures (11 strains and six independent
cultures in our case). On the other hand, planktonic cells exhibit a greater level of variability
in the PC space, but the two clusters are still easily separable along the PC1. This outcome
could be used in the development of a model to cluster any new sample to one of these
clusters, thus providing an efficient and reliable, non-invasive and direct decision-making
approach, regardless of the specific strain and culture. The difference of the two cell states
in the PC space can be explained if we consider the major difference between the two cell
states, i.e., attached vs. planktonic cells. In the case of biofilm colony formation, this colony
comprises a consortium of cells that stick to each other and to a surface [42]. These attached
cells become embedded within a slimy extracellular matrix that is composed of extracel-
lular polymeric substances (EPS), which are a polymeric conglomeration of extracellular
polysaccharides, proteins, lipids and DNA [43,44]. Thus, these EPSs are expected to be less
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variant due to the differences among the strains and so this can explain the low variance of
the Gaussian mode, representing the adhered/biofilm samples, as presented in Figure 4.
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3.3. Chemical Compound Groups Discriminate Planktonic vs. Attached Cells

Via the second FTIR spectra analysis method, we conducted a supervised classification
procedure, as described in the Materials and Methods Section. Prior to unsupervised
clustering and supervised classification, we employed extra-trees in order to identify
the important/significant wavenumbers of the whole spectra. It turns out that only 45
wavenumbers (essentially corresponding to two major chemical classes, as discussed later
on) are adequate for efficient and robust classification and clustering purposes. Therefore,
using these 45 wave numbers (shown at Figure 5 as red vertical lines), we were able to
build a classification model (SVM classifier with linear kernel, see Materials and Methods
Section) that reached 100% accuracy in the five-fold cross validation training phase and
also at the test/validation phase (Table 1), ensuring that no over-fitting occurred.
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Table 1. Confusion matrix of the test samples for the trained SVM classifier.

Actual Class (Cell State)

Planktonic Attached

Predicted class
(cell state)

Planktonic 14 0

Attached 0 16

Continuing our analysis, and in order to support our findings and arguments stated
earlier, we also conducted a literature search concerning the selected groups of wavenum-
bers. It is important to mention that the FTIR spectral analysis consists of a quantitative
approach to study the metabolic fingerprint and can mainly detect the types of functional
groups present in the structure of the molecules. More invasive and time consuming
methods are used to identify the exact chemical composition, such as gas chromatography
coupled to mass spectrometry. The FTIR spectra analysis, in our case, gave fast real time
screening to reveal chemical group compounds and suggest—based on known recoded
spectra—the corresponding molecules implicated in biochemical changes that lead to
biofilm formation. From this point of view, the FTIR spectra were analyzed to further
investigate the compounds, which differentiated the two groups of planktonic and attached
cells on the stainless steel surface in order to better understand the mechanism behind this
process (Figure 5).

The observed bands at 2960–3005 cm−1 correspond to free amino acids and CH
stretching [44]. The numerous absorption peaks at the 2800–2950 cm−1 region are related
to the CH3-CH2-CH strength, containing lipid compounds. More precisely, the stretching
vibration of the lipid hydrocarbon tail was observed at 2921 and 2854 cm−1 (CH2), as well
as at 2960 and 2869 cm−1 (CH3) [45]. A shoulder around 2938 cm−1 was also present that
was mainly assigned to the CH2 stretching of ergosterol [46]. The peak at 2356 cm−1 was
associated with carbon dioxide, while the peak at 1390 cm−1 was associated with the O-H
bending of the phenol ring. The 900 to 1250 cm−1 region was typical for polysaccharides
due, in part, to C-O-C and C-O ring-stretching vibrations, as well as to the P=O stretching
of phosphodiesters [47,48]. More precisely, the peak at 962 cm−1 corresponded to the
pyranose ring and the larger region at 1017 to 1045 cm−1, corresponds to the saccharide
component ring strength. The component bands that were disclosed mainly concern
β-glucans at 994 cm−1 (β (1–6)), at 1026 cm−1 (β (1–4)) and mannans at 1052 cm−1 [49].

4. Discussion

B. bruxellensis is a wine spoilage yeast species characterized by a high level of per-
sistence in winery environments due to its biofilm formation capacity on both biotic and
abiotic surfaces. The characteristic of this species to contaminate wine cellars and at the
same time displaying high resistance to cleaning antimicrobial agents, is a cause of concern
for the wine industry [9,50]. In our present study we firstly showed that B. bruxellensis
strains were discriminated for their capacity to form biofilms on stainless steel surfaces, as
has already been observed for other phenotypic traits with oenological interest [40,51–53].
The lactic acid bacteria of wine, especially the Oenococus oeni species, have the ability to
form biofilms on stainless steel surfaces, while the attached cells contribute to the aromatic
profile of the wine [54].

It is necessary for food quality and safety reasons to estimate and assess strain variabil-
ity, and the related spoilage potential, in order to implement reasonable safety measures [55].
The remarkable adaptation capacity of B. bruxellensis is reflected via its genomic plastic-
ity and polymorphisms, which consequently lead to expanded strain variability, while
inevitably categorizing the strains vis a vis their spoilage potential [25,56]. Nevertheless,
the favorable growth environment of the wine cellar promotes the invasion and surface ad-
hesion of microorganisms [48] and at the same time shapes the genetic partners of the well
adapted species [57,58]. A similar scenario has been proposed for Saccharomyces cerevisiae,
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where essential genes for adherence (FLO genes) have been maintained in wild lineages,
indicating that biofilm formation is important for yeast survival in the wild [59–61].

Interestingly, the biochemical changes that lead to the cells forming biofilms were
revealed for the first time by applying FTIR, a non-invasive and easy to use technique. Our
innovative approach succeeded in discriminating between the spectra of planktonic vs.
attached cells, as well as revealing the metabolic fingerprint implicated in biofilm formation.
To date, studies have focused mainly on the proteome of attached cells of bacteria, by
revealing protein regulation factors for improved adaptation to hostile conditions [62,63].
Respectively, for foodborne pathogens, it has been assumed that the biofilm formation
capacity is part of the species dissemination, as the biofilm related genes have been shown
to be present in all the tested strains, irrespective of other phenotypes [64].

Unsupervised clustering and supervised classification of the obtained spectra suc-
ceed in revealing the two main chemical groups that discriminated the attached vs. the
planktonic cells: the polysaccharide and lipid groups. The presence of polysaccharides
in the biofilm matrix has been well documented in the literature, especially in the case of
bacteria. Polysaccharides are the primary material of the EPS matrix that shape the biofilm
structure and also participate in cell attachment to surfaces [12]. In particular, according
to our results, the presence of β-glucan bonding could signify the liberation procedure of
the cell wall polysaccharides (β 1–6) or excreted polysaccharides (β 1–4) [65]. Indeed, the
presence of β-glucan has been proven to assist the cell attachment of Botrytis cinerea on
grapes [66], while this polymer can modulate cell adhesion to biotic and abiotic surfaces
of wine lactic acid bacteria [67]. In the case of lipids, the adhered bacteria can decrease
their membrane fluidity by altering the membrane lipid composition and better adapt to
environmental conditions. Additionally, it has been documented that biofilms generally
possess distinct sterol patterns in diverse phases compared with planktonic cells, and in
particular, an increased amount of ergosterol was determined in the early stages of biofilm
formation [68].

The excreted molecules, in addition to their role in cell attachment, also serve as
signaling molecules to help in the communication between microbial communities. This
mechanism, often referred as quorum sensing (QS), is involved in the regulation of biofilm
formation, and specifically, in the conformation of the EPS structure [69]. The regulatory sys-
tem of QS includes intracellular and extracellular signaling that establishes a complicated
mechanism that is poorly understood [13]. It is evident that identifying the key compounds
of the EPS matrix and unravelling the implicated biosynthetic pathways, will constitute an
important step in managing biofilm formation processes. The present work has succeeded
in representing an initial approach to study the mechanism behind the biofilm formation
capacity of wine spoilage yeast, identifying more feasible a more adapted techniques to
prevent future yeast adhesion and contamination during the winemaking process.

5. Conclusions

The results obtained from the present study reveal that the biochemical changes that
occur during biofilm formation seem to be homogenous for B. bruxellensis, suggesting
a common adaptation strategy within the species. Exploiting this outcome, we were
able to develop a prediction model for efficiently and reliably assessing the phenotype of
planktonic vs. attached cells, for specific strains and cultures. Furthermore, by revealing
the metabolites implicated in the adhesion process, this study represents the first approach
to better understanding the mechanisms behind yeast persistence in wine production
cellars. Our novel developed technique will assist in the future development of preventive
strategies against spoilage yeast.
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Supplementary Materials: The following are available online at https://www.mdpi.com/2076-2
607/9/3/587/s1, Figure S1: FTIR spectra: (A) Raw, unprocessed spectra; red line shows the mean
planktonic spectrum, while the red shaded area the corresponding standard deviation at each
wavenumber across all planktonic samples, the same holds true for the biofilm samples in blue.
(B) Truncated at (880, 3100) cm−1 and RNV normalized spectra, means and corresponding standard
deviations; blue color for the planktonic samples and green for the biofilm ones.
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